![](../logo.png)
Exposure metrics selection for linear ER models
dev_ermod_bin_exp_sel.Rd
This functions is used to develop an linear ER model with binary and continuous endpoint, using various exposure metrics and selecting the best one.
Usage
dev_ermod_bin_exp_sel(
data,
var_resp,
var_exp_candidates,
verbosity_level = 1,
chains = 4,
iter = 2000
)
dev_ermod_lin_exp_sel(
data,
var_resp,
var_exp_candidates,
verbosity_level = 1,
chains = 4,
iter = 2000
)
Arguments
- data
Input data for E-R analysis
- var_resp
Response variable name in character
- var_exp_candidates
Candidate exposure variable names in character vector
- verbosity_level
Verbosity level. 0: No output, 1: Display steps, 2: Display progress in each step, 3: Display MCMC sampling.
- chains
Number of chains for Stan.
- iter
Number of iterations for Stan.
Examples
# \donttest{
data(d_sim_binom_cov_hgly2)
ermod_bin_exp_sel <-
dev_ermod_bin_exp_sel(
data = d_sim_binom_cov_hgly2,
var_resp = "AEFLAG",
var_exp_candidates = c("AUCss_1000", "Cmaxss", "Cminss")
)
#> ℹ The exposure metric selected was: AUCss_1000
ermod_bin_exp_sel
#>
#> ── Binary ER model & exposure metric selection ─────────────────────────────────
#> ℹ Use `plot_er_exp_sel()` for ER curve of all exposure metrics
#> ℹ Use `plot_er()` with `show_orig_data = TRUE` for ER curve of the selected exposure metric
#>
#> ── Exposure metrics comparison ──
#>
#> elpd_diff se_diff
#> AUCss_1000 0.00 0.00
#> Cminss -4.51 3.10
#> Cmaxss -5.04 2.85
#>
#> ── Selected model ──
#>
#> stan_glm
#> family: binomial [logit]
#> formula: AEFLAG ~ AUCss_1000
#> observations: 500
#> predictors: 2
#> ------
#> Median MAD_SD
#> (Intercept) -2.04 0.22
#> AUCss_1000 0.41 0.07
#> ------
#> * For help interpreting the printed output see ?print.stanreg
#> * For info on the priors used see ?prior_summary.stanreg
# }
data(d_sim_lin)
ermod_lin_exp_sel <- dev_ermod_lin_exp_sel(
data = d_sim_lin,
var_resp = "response",
var_exp_candidates = c("AUCss", "Cmaxss")
)
#> ℹ The exposure metric selected was: AUCss
ermod_lin_exp_sel
#>
#> ── Linear ER model & exposure metric selection ─────────────────────────────────
#> ℹ Use `plot_er_exp_sel()` for ER curve of all exposure metrics
#> ℹ Use `plot_er()` with `show_orig_data = TRUE` for ER curve of the selected exposure metric
#>
#> ── Exposure metrics comparison ──
#>
#> elpd_diff se_diff
#> AUCss 0.00 0.00
#> Cmaxss -13.33 4.52
#>
#> ── Selected model ──
#>
#> stan_glm
#> family: gaussian [identity]
#> formula: response ~ AUCss
#> observations: 101
#> predictors: 2
#> ------
#> Median MAD_SD
#> (Intercept) 31.32 2.38
#> AUCss 0.47 0.04
#> Auxiliary parameter(s):
#> Median MAD_SD
#> sigma 11.76 0.83
#> ------
#> * For help interpreting the printed output see ?print.stanreg
#> * For info on the priors used see ?prior_summary.stanreg