![](../logo.png)
Simulate from ER model
sim_er.Rd
Simulate from ER model
Usage
sim_er(
ermod,
newdata = NULL,
n_draws_sim = NULL,
seed_sample_draws = NULL,
output_type = c("draws", "median_qi"),
qi_width = 0.95,
.nrow_cov_data = NULL
)
Arguments
- ermod
An object of class
ermod
- newdata
New data to use for simulation. Default is NULL (use the data in the model object).
- n_draws_sim
Number of draws for simulation. If NULL (default), all draws in the model object are used.
- seed_sample_draws
Seed for sampling draws. Default is NULL.
- output_type
Type of output. "draws" returns the raw draws from the simulation, and "median_qi" returns the median and quantile interval.
- qi_width
Width of the quantile interval. Default is 0.95. Only used when
output_type = "median_qi"
.- .nrow_cov_data
Number of rows in the covariate data, used for internal purposes. Users should not set this argument.
Value
ersim
object, which is a tibble with the simulated responses
with some additional information in object attributes.
It has three types of predictions - .linpred
, .epred
, .prediction
.
.linpred
and .epred
are similar in a way that they both represent
"expected response", i.e. without residual variability. They are the same
for models with continuous endpoits (Emax model). For models with binary
endpoints, .linpred
is the linear predictor (i.e. on the logit scale) and
.epred
is on the probability scale. .prediction
is the predicted
response with residual variability (or in case of binary endpoint,
the predicted yes (1) or no (0) for event occurrence).
See tidybayes::add_epred_draws()
for more details.
In case of output_type = "median_qi"
, it returns ersim_med_qi
object.
See also
calc_ersim_med_qi()
for calculating median and quantile interval
from ersim
object (generated with output_type = "draws"
).
Examples
# \donttest{
data(d_sim_binom_cov_hgly2)
ermod_bin <- dev_ermod_bin(
data = d_sim_binom_cov_hgly2,
var_resp = "AEFLAG",
var_exposure = "AUCss_1000",
var_cov = "BHBA1C_5",
)
ersim <- sim_er(
ermod_bin,
n_draws_sim = 500, # This is set to make the example run faster
output_type = "draws"
)
ersim_med_qi <- sim_er(
ermod_bin,
n_draws_sim = 500, # This is set to make the example run faster
output_type = "median_qi"
)
ersim
#> # A tibble: 250,000 × 24
#> # Groups: ID, AETYPE, AEFLAG, Dose_mg, AUCss, Cmaxss, Cminss, BAGE, BWT,
#> # BGLUC, BHBA1C, RACE, VISC, AUCss_1000, BAGE_10, BWT_10, BHBA1C_5, .row
#> # [500]
#> ID AETYPE AEFLAG Dose_mg AUCss Cmaxss Cminss BAGE BWT BGLUC BHBA1C
#> <int> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 hgly2 0 200 866. 64.3 10.1 84.4 74.1 4.65 31.5
#> 2 1 hgly2 0 200 866. 64.3 10.1 84.4 74.1 4.65 31.5
#> 3 1 hgly2 0 200 866. 64.3 10.1 84.4 74.1 4.65 31.5
#> 4 1 hgly2 0 200 866. 64.3 10.1 84.4 74.1 4.65 31.5
#> 5 1 hgly2 0 200 866. 64.3 10.1 84.4 74.1 4.65 31.5
#> 6 1 hgly2 0 200 866. 64.3 10.1 84.4 74.1 4.65 31.5
#> 7 1 hgly2 0 200 866. 64.3 10.1 84.4 74.1 4.65 31.5
#> 8 1 hgly2 0 200 866. 64.3 10.1 84.4 74.1 4.65 31.5
#> 9 1 hgly2 0 200 866. 64.3 10.1 84.4 74.1 4.65 31.5
#> 10 1 hgly2 0 200 866. 64.3 10.1 84.4 74.1 4.65 31.5
#> # ℹ 249,990 more rows
#> # ℹ 13 more variables: RACE <chr>, VISC <fct>, AUCss_1000 <dbl>, BAGE_10 <dbl>,
#> # BWT_10 <dbl>, BHBA1C_5 <dbl>, .row <int>, .chain <int>, .iteration <int>,
#> # .draw <int>, .epred <dbl>, .linpred <dbl>, .prediction <int>
ersim_med_qi
#> # A tibble: 500 × 27
#> ID AETYPE AEFLAG Dose_mg AUCss Cmaxss Cminss BAGE BWT BGLUC BHBA1C
#> <int> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 hgly2 0 200 866. 64.3 10.1 84.4 74.1 4.65 31.5
#> 2 2 hgly2 0 200 1707. 166. 27.3 59.1 88.2 7.24 41.9
#> 3 3 hgly2 0 200 746. 68.2 15.8 64.3 88.0 5.73 47.7
#> 4 4 hgly2 0 200 1984. 287. 37.2 65.5 114. 5.26 23.4
#> 5 5 hgly2 0 200 2045. 275. 53.1 67.5 64.6 4.49 43.1
#> 6 6 hgly2 0 200 632. 47.3 12.0 67.0 73.0 6.41 43.6
#> 7 7 hgly2 0 200 2274. 136. 33.6 73.7 63.6 7.22 35.9
#> 8 8 hgly2 0 200 1347. 130. 21.7 59.9 99.7 5.34 36.2
#> 9 9 hgly2 0 200 1101. 60.7 11.2 65.8 82.3 5.47 36.0
#> 10 10 hgly2 0 200 1822. 179. 49.3 65.5 62.3 5.70 33.7
#> # ℹ 490 more rows
#> # ℹ 16 more variables: RACE <chr>, VISC <fct>, AUCss_1000 <dbl>, BAGE_10 <dbl>,
#> # BWT_10 <dbl>, BHBA1C_5 <dbl>, .row <int>, .epred <dbl>, .epred.lower <dbl>,
#> # .epred.upper <dbl>, .linpred <dbl>, .linpred.lower <dbl>,
#> # .linpred.upper <dbl>, .width <dbl>, .point <chr>, .interval <chr>
# }