Diffusion pipelines
beignet.diffusers.AlphaFold3DiffusionPipeline
Bases: DiffusionPipeline
A small Diffusers pipeline for AF3-style coordinate diffusion.
Modules:
trunk : your AF3 trunk (must expose encode_conditioners(f_star)
-> (s_inputs, s_trunk, z_trunk))
diffusion : your DiffusionModule (x_noisy, t, f_star_pos, s_inputs, s_trunk, z_trunk, z_atom) -> x_denoised
scheduler : AF3Scheduler
centre_aug : your CentreRandomAugmentation (x) -> x
Call: call(f_star, schedule=None, z_atom_dim=16) -> x_final (B,N,3)
Source code in src/beignet/diffusers/_alphafold3_diffusion_pipeline.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|
__call__
__call__(f_star, *, schedule=None, z_atom_dim=16, generator=None, dtype=None)
Args: f_star: dict with at least 'ref_pos' (B,N,3). Other features are trunk-specific. schedule: optional (T+1,) tensor to override scheduler.c z_atom_dim: channel dimension for per-atom pair features (zeros by default) generator: torch.Generator for reproducible sampling dtype: compute dtype override
Returns: x: (B,N,3) final coordinates
Source code in src/beignet/diffusers/_alphafold3_diffusion_pipeline.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|