Chebyshev polynomial
beignet.add_chebyshev_polynomial
add_chebyshev_polynomial(input, other)
Returns the sum of two polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
other
|
Tensor
|
Polynomial coefficients. |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
Tensor
|
Polynomial coefficients. |
Source code in src/beignet/_add_chebyshev_polynomial.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
beignet.chebyshev_extrema
chebyshev_extrema(input)
Source code in src/beignet/_chebyshev_extrema.py
7 8 9 10 11 |
|
beignet.chebyshev_gauss_quadrature
chebyshev_gauss_quadrature(degree)
Source code in src/beignet/_chebyshev_gauss_quadrature.py
8 9 10 11 12 13 14 15 16 |
|
beignet.chebyshev_interpolation
chebyshev_interpolation(func, degree, *args)
Source code in src/beignet/_chebyshev_interpolation.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
beignet.chebyshev_polynomial_companion
chebyshev_polynomial_companion(input)
Source code in src/beignet/_chebyshev_polynomial_companion.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
beignet.chebyshev_polynomial_domain
module-attribute
chebyshev_polynomial_domain = tensor([-1.0, 1.0])
beignet.chebyshev_polynomial_from_roots
chebyshev_polynomial_from_roots(input)
Source code in src/beignet/_chebyshev_polynomial_from_roots.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
beignet.chebyshev_polynomial_one
module-attribute
chebyshev_polynomial_one = tensor([1.0])
beignet.chebyshev_polynomial_power
chebyshev_polynomial_power(input, exponent, maximum_exponent=16.0)
Source code in src/beignet/_chebyshev_polynomial_power.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
beignet.chebyshev_polynomial_roots
chebyshev_polynomial_roots(input)
Source code in src/beignet/_chebyshev_polynomial_roots.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
beignet.chebyshev_polynomial_to_polynomial
chebyshev_polynomial_to_polynomial(input)
Source code in src/beignet/_chebyshev_polynomial_to_polynomial.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
|
beignet.chebyshev_polynomial_vandermonde
chebyshev_polynomial_vandermonde(x, degree)
Source code in src/beignet/_chebyshev_polynomial_vandermonde.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
|
beignet.chebyshev_polynomial_vandermonde_2d
chebyshev_polynomial_vandermonde_2d(x, y, degree)
Source code in src/beignet/_chebyshev_polynomial_vandermonde_2d.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
|
beignet.chebyshev_polynomial_vandermonde_3d
chebyshev_polynomial_vandermonde_3d(x, y, z, degree)
Source code in src/beignet/_chebyshev_polynomial_vandermonde_3d.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
|
beignet.chebyshev_polynomial_weight
chebyshev_polynomial_weight(input)
Source code in src/beignet/_chebyshev_polynomial_weight.py
5 6 |
|
beignet.chebyshev_polynomial_x
module-attribute
chebyshev_polynomial_x = tensor([0.0, 1.0])
beignet.chebyshev_polynomial_zero
module-attribute
chebyshev_polynomial_zero = tensor([0.0])
beignet.chebyshev_zeros
chebyshev_zeros(input)
Source code in src/beignet/_chebyshev_zeros.py
7 8 9 10 11 |
|
beignet.differentiate_chebyshev_polynomial
differentiate_chebyshev_polynomial(input, order=1, scale=1, axis=0)
Returns the derivative of a polynomial.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
order
|
Tensor
|
|
1
|
scale
|
Tensor
|
|
1
|
dim
|
int
|
|
0
|
Returns:
Name | Type | Description |
---|---|---|
output |
Tensor
|
Polynomial coefficients of the derivative. |
Source code in src/beignet/_differentiate_chebyshev_polynomial.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
beignet.divide_chebyshev_polynomial
divide_chebyshev_polynomial(input, other)
Returns the quotient and remainder of two polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
other
|
Tensor
|
Polynomial coefficients. |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
Tuple[Tensor, Tensor]
|
Polynomial coefficients of the quotient and remainder. |
Source code in src/beignet/_divide_chebyshev_polynomial.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
beignet.evaluate_chebyshev_polynomial
evaluate_chebyshev_polynomial(input, coefficients, tensor=True)
Source code in src/beignet/_evaluate_chebyshev_polynomial.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
|
beignet.evaluate_chebyshev_polynomial_2d
evaluate_chebyshev_polynomial_2d(x, y, coefficients)
Source code in src/beignet/_evaluate_chebyshev_polynomial_2d.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
|
beignet.evaluate_chebyshev_polynomial_3d
evaluate_chebyshev_polynomial_3d(x, y, z, coefficients)
Source code in src/beignet/_evaluate_chebyshev_polynomial_3d.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
beignet.evaluate_chebyshev_polynomial_cartesian_2d
evaluate_chebyshev_polynomial_cartesian_2d(x, y, c)
Source code in src/beignet/_evaluate_chebyshev_polynomial_cartesian_2d.py
6 7 8 9 10 11 12 13 |
|
beignet.evaluate_chebyshev_polynomial_cartesian_3d
evaluate_chebyshev_polynomial_cartesian_3d(x, y, z, c)
Source code in src/beignet/_evaluate_chebyshev_polynomial_cartesian_3d.py
6 7 8 9 10 11 12 13 14 |
|
beignet.fit_chebyshev_polynomial
fit_chebyshev_polynomial(input, other, degree, relative_condition=None, full=False, weight=None)
Source code in src/beignet/_fit_chebyshev_polynomial.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
beignet.integrate_chebyshev_polynomial
integrate_chebyshev_polynomial(input, order=1, k=None, lower_bound=0, scale=1, axis=0)
Source code in src/beignet/_integrate_chebyshev_polynomial.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
beignet.linear_chebyshev_polynomial
linear_chebyshev_polynomial(input, other)
Source code in src/beignet/_linear_chebyshev_polynomial.py
5 6 |
|
beignet.multiply_chebyshev_polynomial
multiply_chebyshev_polynomial(input, other, mode='full')
Returns the product of two polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
other
|
Tensor
|
Polynomial coefficients. |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
Tensor
|
Polynomial coefficients of the product. |
Source code in src/beignet/_multiply_chebyshev_polynomial.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
beignet.multiply_chebyshev_polynomial_by_x
multiply_chebyshev_polynomial_by_x(input, mode='full')
Source code in src/beignet/_multiply_chebyshev_polynomial_by_x.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
beignet.subtract_chebyshev_polynomial
subtract_chebyshev_polynomial(input, other)
Returns the difference of two polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
other
|
Tensor
|
Polynomial coefficients. |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
Tensor
|
Polynomial coefficients of the difference. |
Source code in src/beignet/_subtract_chebyshev_polynomial.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
beignet.trim_chebyshev_polynomial_coefficients
trim_chebyshev_polynomial_coefficients(input, tol=0.0)
Source code in src/beignet/_trim_chebyshev_polynomial_coefficients.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|