Legendre polynomial
beignet.add_legendre_polynomial
add_legendre_polynomial(input, other)
Returns the sum of two polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
other
|
Tensor
|
Polynomial coefficients. |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
Tensor
|
Polynomial coefficients. |
Source code in src/beignet/_add_legendre_polynomial.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
beignet.differentiate_legendre_polynomial
differentiate_legendre_polynomial(input, order=1, scale=1, axis=0)
Returns the derivative of a polynomial.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
order
|
Tensor
|
|
1
|
scale
|
Tensor
|
|
1
|
dim
|
int
|
|
0
|
Returns:
Name | Type | Description |
---|---|---|
output |
Tensor
|
Polynomial coefficients of the derivative. |
Source code in src/beignet/_differentiate_legendre_polynomial.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
|
beignet.divide_legendre_polynomial
divide_legendre_polynomial(input, other)
Returns the quotient and remainder of two polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
other
|
Tensor
|
Polynomial coefficients. |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
Tuple[Tensor, Tensor]
|
Polynomial coefficients of the quotient and remainder. |
Source code in src/beignet/_divide_legendre_polynomial.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
beignet.evaluate_legendre_polynomial
evaluate_legendre_polynomial(input, coefficients, tensor=True)
Source code in src/beignet/_evaluate_legendre_polynomial.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
|
beignet.evaluate_legendre_polynomial_2d
evaluate_legendre_polynomial_2d(x, y, coefficients)
Source code in src/beignet/_evaluate_legendre_polynomial_2d.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
|
beignet.evaluate_legendre_polynomial_3d
evaluate_legendre_polynomial_3d(x, y, z, coefficients)
Source code in src/beignet/_evaluate_legendre_polynomial_3d.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
beignet.evaluate_legendre_polynomial_cartesian_2d
evaluate_legendre_polynomial_cartesian_2d(x, y, c)
Source code in src/beignet/_evaluate_legendre_polynomial_cartesian_2d.py
6 7 8 9 10 11 12 13 |
|
beignet.evaluate_legendre_polynomial_cartesian_3d
evaluate_legendre_polynomial_cartesian_3d(x, y, z, c)
Source code in src/beignet/_evaluate_legendre_polynomial_cartesian_3d.py
6 7 8 9 10 11 12 13 14 |
|
beignet.fit_legendre_polynomial
fit_legendre_polynomial(input, other, degree, relative_condition=None, full=False, weight=None)
Source code in src/beignet/_fit_legendre_polynomial.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|
beignet.integrate_legendre_polynomial
integrate_legendre_polynomial(input, order=1, k=None, lower_bound=0, scale=1, axis=0)
Source code in src/beignet/_integrate_legendre_polynomial.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
beignet.legendre_polynomial_companion
legendre_polynomial_companion(input)
Source code in src/beignet/_legendre_polynomial_companion.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
|
beignet.legendre_polynomial_domain
module-attribute
legendre_polynomial_domain = tensor([-1.0, 1.0])
beignet.legendre_polynomial_from_roots
legendre_polynomial_from_roots(input)
Source code in src/beignet/_legendre_polynomial_from_roots.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
beignet.legendre_polynomial_one
module-attribute
legendre_polynomial_one = tensor([1.0])
beignet.legendre_polynomial_power
legendre_polynomial_power(input, exponent, maximum_exponent=16.0)
Source code in src/beignet/_legendre_polynomial_power.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
beignet.legendre_polynomial_roots
legendre_polynomial_roots(input)
Source code in src/beignet/_legendre_polynomial_roots.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
beignet.legendre_polynomial_to_polynomial
legendre_polynomial_to_polynomial(input)
Source code in src/beignet/_legendre_polynomial_to_polynomial.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
beignet.legendre_polynomial_vandermonde
legendre_polynomial_vandermonde(x, degree)
Source code in src/beignet/_legendre_polynomial_vandermonde.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
|
beignet.legendre_polynomial_vandermonde_2d
legendre_polynomial_vandermonde_2d(x, y, degree)
Source code in src/beignet/_legendre_polynomial_vandermonde_2d.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
|
beignet.legendre_polynomial_vandermonde_3d
legendre_polynomial_vandermonde_3d(x, y, z, degree)
Source code in src/beignet/_legendre_polynomial_vandermonde_3d.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
|
beignet.legendre_polynomial_weight
legendre_polynomial_weight(x)
Source code in src/beignet/_legendre_polynomial_weight.py
5 6 |
|
beignet.legendre_polynomial_x
module-attribute
legendre_polynomial_x = tensor([0.0, 1.0])
beignet.legendre_polynomial_zero
module-attribute
legendre_polynomial_zero = tensor([0.0])
beignet.linear_legendre_polynomial
linear_legendre_polynomial(input, other)
Source code in src/beignet/_linear_legendre_polynomial.py
5 6 |
|
beignet.multiply_legendre_polynomial
multiply_legendre_polynomial(input, other, mode='full')
Returns the product of two polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
other
|
Tensor
|
Polynomial coefficients. |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
Tensor
|
Polynomial coefficients of the product. |
Source code in src/beignet/_multiply_legendre_polynomial.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
|
beignet.multiply_legendre_polynomial_by_x
multiply_legendre_polynomial_by_x(input, mode='full')
Source code in src/beignet/_multiply_legendre_polynomial_by_x.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
beignet.subtract_legendre_polynomial
subtract_legendre_polynomial(input, other)
Returns the difference of two polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
other
|
Tensor
|
Polynomial coefficients. |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
Tensor
|
Polynomial coefficients of the difference. |
Source code in src/beignet/_subtract_legendre_polynomial.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
beignet.trim_legendre_polynomial_coefficients
trim_legendre_polynomial_coefficients(input, tol=0.0)
Source code in src/beignet/_trim_legendre_polynomial_coefficients.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|