Physicists’ Hermite polynomial
beignet.add_physicists_hermite_polynomial
add_physicists_hermite_polynomial(input, other)
Returns the sum of two polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
other
|
Tensor
|
Polynomial coefficients. |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
Tensor
|
Polynomial coefficients. |
Source code in src/beignet/_add_physicists_hermite_polynomial.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
beignet.differentiate_physicists_hermite_polynomial
differentiate_physicists_hermite_polynomial(input, order=1, scale=1, axis=0)
Returns the derivative of a polynomial.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
order
|
Tensor
|
|
1
|
scale
|
Tensor
|
|
1
|
dim
|
int
|
|
0
|
Returns:
Name | Type | Description |
---|---|---|
output |
Tensor
|
Polynomial coefficients of the derivative. |
Source code in src/beignet/_differentiate_physicists_hermite_polynomial.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
beignet.divide_physicists_hermite_polynomial
divide_physicists_hermite_polynomial(input, other)
Returns the quotient and remainder of two polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
other
|
Tensor
|
Polynomial coefficients. |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
Tuple[Tensor, Tensor]
|
Polynomial coefficients of the quotient and remainder. |
Source code in src/beignet/_divide_physicists_hermite_polynomial.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
beignet.evaluate_physicists_hermite_polynomial
evaluate_physicists_hermite_polynomial(input, coefficients, tensor=True)
Source code in src/beignet/_evaluate_physicists_hermite_polynomial.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
|
beignet.evaluate_physicists_hermite_polynomial_2d
evaluate_physicists_hermite_polynomial_2d(x, y, coefficients)
Source code in src/beignet/_evaluate_physicists_hermite_polynomial_2d.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
|
beignet.evaluate_physicists_hermite_polynomial_3d
evaluate_physicists_hermite_polynomial_3d(x, y, z, coefficients)
Source code in src/beignet/_evaluate_physicists_hermite_polynomial_3d.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
beignet.evaluate_physicists_hermite_polynomial_cartesian_2d
evaluate_physicists_hermite_polynomial_cartesian_2d(x, y, coefficients)
Source code in src/beignet/_evaluate_physicists_hermite_polynomial_cartesian_2d.py
8 9 10 11 12 13 14 15 16 17 18 19 |
|
beignet.evaluate_physicists_hermite_polynomial_cartesian_3d
evaluate_physicists_hermite_polynomial_cartesian_3d(x, y, z, c)
Source code in src/beignet/_evaluate_physicists_hermite_polynomial_cartesian_3d.py
8 9 10 11 12 13 14 15 16 |
|
beignet.fit_physicists_hermite_polynomial
fit_physicists_hermite_polynomial(input, other, degree, relative_condition=None, full=False, weight=None)
Source code in src/beignet/_fit_physicists_hermite_polynomial.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
beignet.integrate_physicists_hermite_polynomial
integrate_physicists_hermite_polynomial(input, order=1, k=None, lower_bound=0, scale=1, axis=0)
Source code in src/beignet/_integrate_physicists_hermite_polynomial.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
|
beignet.linear_physicists_hermite_polynomial
linear_physicists_hermite_polynomial(input, other)
Source code in src/beignet/_linear_physicists_hermite_polynomial.py
5 6 |
|
beignet.multiply_physicists_hermite_polynomial
multiply_physicists_hermite_polynomial(input, other, mode='full')
Returns the product of two polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
other
|
Tensor
|
Polynomial coefficients. |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
Tensor
|
Polynomial coefficients of the product. |
Source code in src/beignet/_multiply_physicists_hermite_polynomial.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
beignet.multiply_physicists_hermite_polynomial_by_x
multiply_physicists_hermite_polynomial_by_x(input, mode='full')
Source code in src/beignet/_multiply_physicists_hermite_polynomial_by_x.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
beignet.physicists_hermite_polynomial_companion
physicists_hermite_polynomial_companion(input)
Source code in src/beignet/_physicists_hermite_polynomial_companion.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
|
beignet.physicists_hermite_polynomial_domain
module-attribute
physicists_hermite_polynomial_domain = tensor([-1.0, 1.0])
beignet.physicists_hermite_polynomial_from_roots
physicists_hermite_polynomial_from_roots(input)
Source code in src/beignet/_physicists_hermite_polynomial_from_roots.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
beignet.physicists_hermite_polynomial_one
module-attribute
physicists_hermite_polynomial_one = tensor([1.0])
beignet.physicists_hermite_polynomial_power
physicists_hermite_polynomial_power(input, exponent, maximum_exponent=16.0)
Source code in src/beignet/_physicists_hermite_polynomial_power.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
beignet.physicists_hermite_polynomial_roots
physicists_hermite_polynomial_roots(input)
Source code in src/beignet/_physicists_hermite_polynomial_roots.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
beignet.physicists_hermite_polynomial_to_polynomial
physicists_hermite_polynomial_to_polynomial(input)
Source code in src/beignet/_physicists_hermite_polynomial_to_polynomial.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
beignet.physicists_hermite_polynomial_vandermonde
physicists_hermite_polynomial_vandermonde(x, degree)
Source code in src/beignet/_physicists_hermite_polynomial_vandermonde.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
beignet.physicists_hermite_polynomial_vandermonde_2d
physicists_hermite_polynomial_vandermonde_2d(x, y, degree)
Source code in src/beignet/_physicists_hermite_polynomial_vandermonde_2d.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
|
beignet.physicists_hermite_polynomial_vandermonde_3d
physicists_hermite_polynomial_vandermonde_3d(x, y, z, degree)
Source code in src/beignet/_physicists_hermite_polynomial_vandermonde_3d.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
beignet.physicists_hermite_polynomial_weight
physicists_hermite_polynomial_weight(x)
Source code in src/beignet/_physicists_hermite_polynomial_weight.py
5 6 |
|
beignet.physicists_hermite_polynomial_x
module-attribute
physicists_hermite_polynomial_x = tensor([0.0, 1.0 / 2.0])
beignet.physicists_hermite_polynomial_zero
module-attribute
physicists_hermite_polynomial_zero = tensor([0.0])
beignet.subtract_physicists_hermite_polynomial
subtract_physicists_hermite_polynomial(input, other)
Returns the difference of two polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Tensor
|
Polynomial coefficients. |
required |
other
|
Tensor
|
Polynomial coefficients. |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
Tensor
|
Polynomial coefficients of the difference. |
Source code in src/beignet/_subtract_physicists_hermite_polynomial.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
beignet.trim_physicists_hermite_polynomial_coefficients
trim_physicists_hermite_polynomial_coefficients(input, tol=0.0)
Source code in src/beignet/_trim_physicists_hermite_polynomial_coefficients.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|