Arguments
- q
(
number
):
the abscissa.- par
(
matrix
):
the beta parameters matrix, with K rows and 2 columns, corresponding to the beta parameters of the K components.- weights
(
numeric
):
the mixture weights of the beta mixture prior which add up to 1.- lower.tail
(
flag
):
ifTRUE
(default), probabilities areP[X <= x]
, and otherwiseP[X > x]
.
Examples
pbetaMix(q = 0.3, par = rbind(c(0.2, 0.4)), weights = 1)
#> [1] 0.5947341
# Can get the one minus CDF values.
pbetaMix(q = 0.3, par = rbind(c(0.2, 0.4)), weights = 1, lower.tail = FALSE)
#> [1] 0.4052659
# With 2 mixture components
pbetaMix(
q = 0.3, par = rbind(c(0.2, 0.4), c(1, 1)),
weights = c(0.6, 0.4)
)
#> [1] 0.4768404
# Can also specify x as a vector.
pbetaMix(
q = seq(0, 1, .01), par = rbind(c(0.2, 0.4), c(1, 1)),
weights = c(0.6, 0.4)
)
#> [1] 0.0000000 0.1788327 0.2090334 0.2302374 0.2474000 0.2622119 0.2754695
#> [8] 0.2876164 0.2989265 0.3095818 0.3197098 0.3294035 0.3387328 0.3477521
#> [15] 0.3565040 0.3650231 0.3733377 0.3814710 0.3894429 0.3972698 0.4049661
#> [22] 0.4125442 0.4200147 0.4273871 0.4346696 0.4418696 0.4489937 0.4560478
#> [29] 0.4630371 0.4699666 0.4768404 0.4836628 0.4904372 0.4971671 0.5038556
#> [36] 0.5105056 0.5171196 0.5237003 0.5302499 0.5367707 0.5432648 0.5497340
#> [43] 0.5561802 0.5626052 0.5690107 0.5753984 0.5817696 0.5881261 0.5944691
#> [50] 0.6008001 0.6071205 0.6134317 0.6197349 0.6260315 0.6323228 0.6386100
#> [57] 0.6448944 0.6511773 0.6574601 0.6637440 0.6700303 0.6763205 0.6826158
#> [64] 0.6889178 0.6952279 0.7015477 0.7078787 0.7142227 0.7205813 0.7269564
#> [71] 0.7333501 0.7397644 0.7462016 0.7526640 0.7591544 0.7656755 0.7722304
#> [78] 0.7788226 0.7854559 0.7921344 0.7988628 0.8056463 0.8124910 0.8194036
#> [85] 0.8263919 0.8334652 0.8406340 0.8479110 0.8553117 0.8628546 0.8705630
#> [92] 0.8784664 0.8866030 0.8950244 0.9038019 0.9130404 0.9229032 0.9336724
#> [99] 0.9459138 0.9611540 1.0000000