This function will calculate the summary statistics for a specific response outcome scenario.
Usage
sumTable(x, n, go_cut, stop_cut, parX, parY = c(0.5, 0.5), round = 2)
Arguments
- x
(
numeric
):
number of successes.- n
(
number
):
number of patients.- go_cut
(
number
):
a meaningful improvement threshold, the lower boundary of a meaningfully improvement in response rate- stop_cut
(
number
):
a poor improvement threshold, the upper boundary of a meaningfully poor improvement in response rate- parX
(
numeric
):
two parameters ofX
's Beta distribution (Control)- parY
(
numeric
):
two parameters ofY
's Beta distribution (Treatment)- round
(
number
):
Digit rounding of the output statistics
Examples
sumTable(
x = 2,
n = 25,
parX = c(1, 52),
parY = c(1, 1),
go_cut = 0.2,
stop_cut = 0.05
)
#> summaries
#> responders 2.00
#> obs ORR [%] 8.00
#> mode [%] 6.48
#> CI lower [%] 0.71
#> CI upper [%] 20.68
#> prob.go [%] 5.87
#> prob.nogo [%] 26.59
# for multiple response scenarios (e.g. 0 to 8 responses out of 25)
summaries <- do.call(
cbind,
lapply(c(0:8),
sumTable,
n = 25,
parX = c(1, 52),
go_cut = 0.2,
stop_cut = 0.05
)
)
summaries
#> summaries summaries summaries summaries summaries summaries
#> responders 0.00 1.00 2.00 3.00 4.00 5.00
#> obs ORR [%] 0.00 4.00 8.00 12.00 16.00 20.00
#> mode [%] 0.00 1.02 4.80 8.83 12.92 17.04
#> CI lower [%] -4.55 -2.42 -0.24 2.03 4.55 7.27
#> CI upper [%] 17.51 13.05 18.83 24.07 28.97 33.64
#> prob.go [%] 0.05 0.74 3.79 11.58 25.23 43.17
#> prob.nogo [%] 93.39 66.49 36.46 16.09 6.00 1.98
#> summaries summaries summaries
#> responders 6.00 7.00 8.00
#> obs ORR [%] 24.00 28.00 32.00
#> mode [%] 21.18 25.32 29.47
#> CI lower [%] 10.17 13.20 16.37
#> CI upper [%] 38.13 42.46 46.67
#> prob.go [%] 61.70 77.26 88.13
#> prob.nogo [%] 0.59 0.17 0.04