Compile MCMC sampler using STAN and create analysis object
Source:R/create_analysis_obj.R
create_analysis_obj.RdCompile MCMC sampler using STAN and create analysis object
Usage
create_analysis_obj(
data_matrix,
outcome,
borrowing,
treatment,
covariates = NULL,
quiet = FALSE
)Arguments
- data_matrix
matrix. The data matrix, including all covariates to be adjusted for, all relevant outcome variables, and treatment arm and external control arm flags.
- outcome
Outcome. Object of classOutcomeas output byoutcome_surv_exponential(),outcome_surv_weibull_ph(), oroutcome_bin_logistic().- borrowing
Borrowing. Object of classBorrowingas output byborrowing_full(),borrowing_none(), andborrowing_hierarchical_commensurate().- treatment
Treatment. Object of classTreatmentas output bytreatment_details().- covariates
Covariates. Object of classCovariatesas output by the functionadd_covariates().- quiet
logical. Whether to suppress messages (
TRUE) or not (FALSE, the default)
Value
Object of class Analysis.
Examples
if (check_cmdstan()) {
anls <- create_analysis_obj(
data_matrix = example_matrix,
outcome = outcome_surv_exponential(
"time",
"cnsr",
baseline_prior = prior_normal(0, 1000)
),
borrowing = borrowing_hierarchical_commensurate(
"ext",
prior_exponential(.001)
),
treatment = treatment_details(
"trt",
prior_normal(0, 1000)
),
covariates = add_covariates(
covariates = c("cov1", "cov2"),
priors = prior_normal(0, 1000)
)
)
}
#> Inputs look good.
#> Stan program compiled successfully!
#> Ready to go! Now call `mcmc_sample()`.