reglm package¶
Submodules¶
reglm.dataset module¶
- class reglm.dataset.CharDataset(seqs, labels, seq_len=None)[source]¶
Bases:
torch.utils.data.dataset.Dataset
- decode(idxs, is_labeled=False)[source]¶
Given a torch tensor of tokens, return the decoded sequence as a string.
reglm.evolve module¶
- reglm.evolve.evolve(start_seqs, regression_model, seq_len=None, language_model=None, label=None, tol=0.0, specific=None, max_iter=10, device=0, num_workers=1, batch_size=512)[source]¶
Directed evolution optionally using a language model to filter sequences.
- Parameters
start_seqs (list) – Starting sequences
regression_model (pl.LightningModule) – Regression model
seq_len (int) – Sequence length for regression model
language_model (pl.LightningModule) – Language model
label (str) – Label for language model
tol (float) – Tolerance for likelihood filter
specific (list) – Task indices if optimizing for task specificity
max_iter (int) – Maximum number of iterations for evolution
device (int) – GPU index
num_workers (int) – Number of workers for regression model
batch_size (int) – Batch size for regression model
- Returns
Dataframe containing evolution results
- Return type
df (pd.DataFrame)
reglm.interpret module¶
- reglm.interpret.ISM_at_pos(seq, pos, drop_ref=True)[source]¶
Perform in-silico mutagenesis at a single position in the sequence.
- reglm.interpret.ISM_predict(seqs, model, seq_len=None, batch_size=512, device=0, num_workers=8)[source]¶
Perform in-silico mutagenesis of DNA sequences and make predictions with a regression model to get per-base importance scores
- Parameters
- Returns
Array of shape (number of sequences x length of sequences x 4)
- Return type
preds (np.array)
- reglm.interpret.ISM_score(seqs, preds)[source]¶
Calculate a per-base importance score from ISM predictions
- Parameters
seqs (list) – List of sequences
preds (np.array) – ISM predictions from seqs
- Returns
Array of shape (N x seq_len), containing per-base importance scores
- Return type
scores (np.array)
- reglm.interpret.generate_random_sequences(n=1, seq_len=1024, seed=None)[source]¶
Generate random DNA sequences.
- reglm.interpret.motif_insert(motif_dict, model, label, ref_label, seq_len, n=100)[source]¶
Insert motifs into random sequences and calculate log-likelihood ratio of each motif given label vs. reference label.
- Parameters
motif_dict (dict) – Dictionary with key-value pairs such as motif ID: consensus sequence
model (pl.LightningModule) – regLM model
label (list) – Label for the regLM model
ref_label (str) –
seq_len (int) – Length of random sequences preceding the motif
n (int) – number of random sequences to insert the motif in
- Returns
Dataframe containing log likelihood ratios of motif-containing sequences
- Return type
(pd.DataFrame)
reglm.lightning module¶
- class reglm.lightning.LightningModel(config=None, ckpt_dir='./checkpoints/hyenadna-medium-160k-seqlen', hyenadna_path='/code/hyena-dna', save_dir='.', lr=0.0001, label_len=None)[source]¶
Bases:
pytorch_lightning.core.module.LightningModule
LightningModule class to train and use autoregressive token-conditioned regLM language models.
- Parameters
config (dict) – Config dictionary containing model parameters
ckpt_dir (str) – Path to directory containing downloaded model checkpoints, or in which they should be downloaded
hyenadna_path (str) – Path to cloned hyenaDNA repository
save_dir (str) – Directory to save model checkpoints and logs
lr (float) – Learning rate
label_len (int) – Number of label tokens preceding each DNA sequence
- compute_accuracy_on_dataset(dataset, batch_size=64, num_workers=8)[source]¶
Perform inference on a dataset and return per-example accuracy Note: this will include the accuracy of predicting the END token (1)
- Parameters
dataset (CharDataset) – Inference dataset
batch_size (int) – Batch size for inference
num_workers (int) – Number of workers for inference
Returns: List of booleans indicating whether the predicted base at each position was equal to the true label or not.
- configure_optimizers()[source]¶
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple.
- Returns
Any of these 6 options.
Single optimizer.
List or Tuple of optimizers.
Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple
lr_scheduler_config
).Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_scheduler_config
.Tuple of dictionaries as described above, with an optional
"frequency"
key.None - Fit will run without any optimizer.
The
lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as thetorch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_scheduler_config
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.# The ReduceLROnPlateau scheduler requires a monitor def configure_optimizers(self): optimizer = Adam(...) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, ...), "monitor": "metric_to_track", "frequency": "indicates how often the metric is updated" # If "monitor" references validation metrics, then "frequency" should be set to a # multiple of "trainer.check_val_every_n_epoch". }, } # In the case of two optimizers, only one using the ReduceLROnPlateau scheduler def configure_optimizers(self): optimizer1 = Adam(...) optimizer2 = SGD(...) scheduler1 = ReduceLROnPlateau(optimizer1, ...) scheduler2 = LambdaLR(optimizer2, ...) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, )
Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in yourLightningModule
.Note
The
frequency
value specified in a dict along with theoptimizer
key is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1:In the former case, all optimizers will operate on the given batch in each optimization step.
In the latter, only one optimizer will operate on the given batch at every step.
This is different from the
frequency
value specified in thelr_scheduler_config
mentioned above.def configure_optimizers(self): optimizer_one = torch.optim.SGD(self.model.parameters(), lr=0.01) optimizer_two = torch.optim.SGD(self.model.parameters(), lr=0.01) return [ {"optimizer": optimizer_one, "frequency": 5}, {"optimizer": optimizer_two, "frequency": 10}, ]
In this example, the first optimizer will be used for the first 5 steps, the second optimizer for the next 10 steps and that cycle will continue. If an LR scheduler is specified for an optimizer using the
lr_scheduler
key in the above dict, the scheduler will only be updated when its optimizer is being used.Examples:
# most cases. no learning rate scheduler def configure_optimizers(self): return Adam(self.parameters(), lr=1e-3) # multiple optimizer case (e.g.: GAN) def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) return gen_opt, dis_opt # example with learning rate schedulers def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) dis_sch = CosineAnnealing(dis_opt, T_max=10) return [gen_opt, dis_opt], [dis_sch] # example with step-based learning rate schedulers # each optimizer has its own scheduler def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) gen_sch = { 'scheduler': ExponentialLR(gen_opt, 0.99), 'interval': 'step' # called after each training step } dis_sch = CosineAnnealing(dis_opt, T_max=10) # called every epoch return [gen_opt, dis_opt], [gen_sch, dis_sch] # example with optimizer frequencies # see training procedure in `Improved Training of Wasserstein GANs`, Algorithm 1 # https://arxiv.org/abs/1704.00028 def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) n_critic = 5 return ( {'optimizer': dis_opt, 'frequency': n_critic}, {'optimizer': gen_opt, 'frequency': 1} )
Note
Some things to know:
Lightning calls
.backward()
and.step()
on each optimizer as needed.If learning rate scheduler is specified in
configure_optimizers()
with key"interval"
(default “epoch”) in the scheduler configuration, Lightning will call the scheduler’s.step()
method automatically in case of automatic optimization.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizers.If you use multiple optimizers,
training_step()
will have an additionaloptimizer_idx
parameter.If you use
torch.optim.LBFGS
, Lightning handles the closure function automatically for you.If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.
If you need to control how often those optimizers step or override the default
.step()
schedule, override theoptimizer_step()
hook.
- decode(idxs)[source]¶
Decodes indices into DNA sequences
- Parameters
idxs (torch.LongTensor) – tensor or array of shape (N, L)
- Returns
list of strings
- Return type
seqs (list)
- encode(seqs, labels, add_start=False, add_stop=False)[source]¶
Encode sequences and labels as indices for model inference.
- filter_base_probs(probs, normalize=True)[source]¶
Return probabilities for valid bases only
- Parameters
probs (torch.tensor, dtype torch.float32) – tensor of shape (N, 16)
normalize (bool) – Whether to re-normalize the probabilities at each
1. (position to sum to) –
- Returns
tensor of shape (N, 4)
- Return type
filtered_probs (torch.FloatTensor)
- forward(x, drop_label=True, return_logits=False)[source]¶
- Parameters
- Returns
- tensor of shape
(N, 16, L - label_len) if drop_label is True, or (N, 16, L) if drop_label is False. Note that the prediction for the END token (1) as well as the hypothetical position after it will be included.
- Return type
logits (torch.tensor, dtype torch.float32)
- generate(labels, max_new_tokens=None, temperature=1.0, top_k=None, top_p=None, normalize_filtered=True, seed=None)[source]¶
- Parameters
max_new_tokens (int) – Maximum number of tokens to add
temperature (float) – Temperature
top_k (int) – Select the top k bases at each position. Set probabilites of other bases to 0.
top_p (float) – Select the top bases at each position until their cumulative probability reaches this value. Set probabilites of other bases to 0.
normalize_filtered (bool) – Normalize probabilities to sum to 1 after filtering
seed (int) – Random seed for sampling
- Returns
List of strings
- Return type
seqs (list)
- normalize_filtered_probs(filtered_probs)[source]¶
Normalize probabilities at each position to sum to 1.
- Parameters
filtered_probs (torch.floatTensor) – Tensor of shape (N, 16, L) or (N, 16)
- Returns
Normalized tensor of the same shape
- on_save_checkpoint(checkpoint)[source]¶
Save data relevant parameters to the model checkpoint on training.
- probs_to_likelihood(probs, idxs)[source]¶
Compute the likelihood of each base in a sequence given model predictions on the sequence.
- Parameters
probs (torch.FloatTensor) – tensor of shape (N, 16, L)
idxs (torch.LongTensor) – tensor of shape (N, L)
- Returns
tensor of shape (N, L) containing the probabilities of real bases
- sample_idxs(probs, random_state=None, top_k=None, top_p=None, normalize_filtered=True)[source]¶
Sample from model predictions at a single position to return a single base per example
- Parameters
probs (torch.tensor, dtype torch.float32) – tensor of shape (N, 16)
random_state (torch.Generator) – torch.Generator object
top_k (int) – Select the top k bases at each position. Set probabilites of other bases to 0.
top_p (float) – Select the top bases at each position until their cumulative probability reaches this value. Set probabilites of other bases to 0.
normalize_filtered (bool) – Normalize probabilities to sum to 1 after filtering
- Returns
tensor of shape (N)
- Return type
idxs (torch.LongTensor)
- threshold_probs(filtered_probs, top_k=None, top_p=None)[source]¶
Threshold the filtered probabilities for valid bases
- Parameters
filtered_probs (torch.tensor, dtype torch.float32) – tensor of shape (N, 4)
top_k (int) – Select the top k bases at each position. Set probabilites of other bases to 0.
top_p (float) – Select the top bases at each position until their cumulative probability reaches this value. Set probabilites of other bases to 0.
- Returns
tensor of shape (N, 4)
- train_on_dataset(train_dataset, val_dataset, batch_size=128, num_workers=8, device=0, max_epochs=3, val_check_interval=5000, weights=None, save_all=False)[source]¶
Train regLM model.
- Parameters
train_dataset (CharDataset) – Training dataset
val_dataset (CharDataset) – Validation dataset
batch_size (int) – Batch size
num_workers (int) – Number of workers for training
device (int) – GPU index
max_epochs (int) – Number of epochs to train
val_check_interval (int) – Number of steps after which to check validation loss
- Returns
pl.Trainer object
- training_step(batch, batch_idx)[source]¶
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Parameters
batch (
Tensor
| (Tensor
, …) | [Tensor
, …]) – The output of yourDataLoader
. A tensor, tuple or list.batch_idx (
int
) – Integer displaying index of this batchoptimizer_idx (
int
) – When using multiple optimizers, this argument will also be present.hiddens (
Any
) – Passed in if :paramref:`~pytorch_lightning.core.module.LightningModule.truncated_bptt_steps` > 0.
- Returns
Any of.
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
None
- Training will skip to the next batch. This is only for automatic optimization.This is not supported for multi-GPU, TPU, IPU, or DeepSpeed.
In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example:
def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss
If you define multiple optimizers, this step will be called with an additional
optimizer_idx
parameter.# Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: # do training_step with encoder ... if optimizer_idx == 1: # do training_step with decoder ...
If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.
# Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hidden states from the previous truncated backprop step out, hiddens = self.lstm(data, hiddens) loss = ... return {"loss": loss, "hiddens": hiddens}
Note
The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.
Note
When
accumulate_grad_batches
> 1, the loss returned here will be automatically normalized byaccumulate_grad_batches
internally.
- validation_epoch_end(output)[source]¶
Called at the end of the validation epoch with the outputs of all validation steps.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
outputs – List of outputs you defined in
validation_step()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.- Returns
None
Note
If you didn’t define a
validation_step()
, this won’t be called.Examples
With a single dataloader:
def validation_epoch_end(self, val_step_outputs): for out in val_step_outputs: ...
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader.
def validation_epoch_end(self, outputs): for dataloader_output_result in outputs: dataloader_outs = dataloader_output_result.dataloader_i_outputs self.log("final_metric", final_value)
- validation_step(batch, batch_idx)[source]¶
Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
batch – The output of your
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple val dataloaders used)
- Returns
Any object or value
None
- Validation will skip to the next batch
# pseudocode of order val_outs = [] for val_batch in val_data: out = validation_step(val_batch) if defined("validation_step_end"): out = validation_step_end(out) val_outs.append(out) val_outs = validation_epoch_end(val_outs)
# if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc})
If you pass in multiple val dataloaders,
validation_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
reglm.metrics module¶
- reglm.metrics.compute_accuracy(model, seqs, shuffle_labels=False, batch_size=64, num_workers=8)[source]¶
Compute per-base accuracy of a trained regLM model on labeled sequences
- Parameters
model (pl.LightningModule) – Trained regLM model
seqs (pd.DataFrame) – Dataframe containing sequences under ‘Sequence’ and labels under ‘label’.
shuffle_labels (bool) – Whether to shuffle the labels among sequences before computing accuracy.
batch_size (int) – Batch size for inference
num_workers (int) – Number of workers for inference
- Returns
original dataframe with added columns for per- base and average accuracy.
- Return type
seqs (pd.DataFrame)
reglm.regression module¶
- class reglm.regression.EnformerModel(lr=0.0001, loss='poisson', pretrained=False, dim=1536, depth=11, n_downsamples=7)[source]¶
Bases:
pytorch_lightning.core.module.LightningModule
Enformer-based single-task regression models that can be trained from scratch or finetuned.
- Parameters
- configure_optimizers()[source]¶
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple.
- Returns
Any of these 6 options.
Single optimizer.
List or Tuple of optimizers.
Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple
lr_scheduler_config
).Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_scheduler_config
.Tuple of dictionaries as described above, with an optional
"frequency"
key.None - Fit will run without any optimizer.
The
lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as thetorch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_scheduler_config
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.# The ReduceLROnPlateau scheduler requires a monitor def configure_optimizers(self): optimizer = Adam(...) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, ...), "monitor": "metric_to_track", "frequency": "indicates how often the metric is updated" # If "monitor" references validation metrics, then "frequency" should be set to a # multiple of "trainer.check_val_every_n_epoch". }, } # In the case of two optimizers, only one using the ReduceLROnPlateau scheduler def configure_optimizers(self): optimizer1 = Adam(...) optimizer2 = SGD(...) scheduler1 = ReduceLROnPlateau(optimizer1, ...) scheduler2 = LambdaLR(optimizer2, ...) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, )
Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in yourLightningModule
.Note
The
frequency
value specified in a dict along with theoptimizer
key is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1:In the former case, all optimizers will operate on the given batch in each optimization step.
In the latter, only one optimizer will operate on the given batch at every step.
This is different from the
frequency
value specified in thelr_scheduler_config
mentioned above.def configure_optimizers(self): optimizer_one = torch.optim.SGD(self.model.parameters(), lr=0.01) optimizer_two = torch.optim.SGD(self.model.parameters(), lr=0.01) return [ {"optimizer": optimizer_one, "frequency": 5}, {"optimizer": optimizer_two, "frequency": 10}, ]
In this example, the first optimizer will be used for the first 5 steps, the second optimizer for the next 10 steps and that cycle will continue. If an LR scheduler is specified for an optimizer using the
lr_scheduler
key in the above dict, the scheduler will only be updated when its optimizer is being used.Examples:
# most cases. no learning rate scheduler def configure_optimizers(self): return Adam(self.parameters(), lr=1e-3) # multiple optimizer case (e.g.: GAN) def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) return gen_opt, dis_opt # example with learning rate schedulers def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) dis_sch = CosineAnnealing(dis_opt, T_max=10) return [gen_opt, dis_opt], [dis_sch] # example with step-based learning rate schedulers # each optimizer has its own scheduler def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) gen_sch = { 'scheduler': ExponentialLR(gen_opt, 0.99), 'interval': 'step' # called after each training step } dis_sch = CosineAnnealing(dis_opt, T_max=10) # called every epoch return [gen_opt, dis_opt], [gen_sch, dis_sch] # example with optimizer frequencies # see training procedure in `Improved Training of Wasserstein GANs`, Algorithm 1 # https://arxiv.org/abs/1704.00028 def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) n_critic = 5 return ( {'optimizer': dis_opt, 'frequency': n_critic}, {'optimizer': gen_opt, 'frequency': 1} )
Note
Some things to know:
Lightning calls
.backward()
and.step()
on each optimizer as needed.If learning rate scheduler is specified in
configure_optimizers()
with key"interval"
(default “epoch”) in the scheduler configuration, Lightning will call the scheduler’s.step()
method automatically in case of automatic optimization.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizers.If you use multiple optimizers,
training_step()
will have an additionaloptimizer_idx
parameter.If you use
torch.optim.LBFGS
, Lightning handles the closure function automatically for you.If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.
If you need to control how often those optimizers step or override the default
.step()
schedule, override theoptimizer_step()
hook.
- forward(x, return_logits=False)[source]¶
Same as
torch.nn.Module.forward()
.- Parameters
*args – Whatever you decide to pass into the forward method.
**kwargs – Keyword arguments are also possible.
- Returns
Your model’s output
- train_on_dataset(train_dataset, val_dataset, device=0, batch_size=512, num_workers=1, save_dir='.', max_epochs=10, weights=None)[source]¶
- training_step(batch, batch_idx)[source]¶
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Parameters
batch (
Tensor
| (Tensor
, …) | [Tensor
, …]) – The output of yourDataLoader
. A tensor, tuple or list.batch_idx (
int
) – Integer displaying index of this batchoptimizer_idx (
int
) – When using multiple optimizers, this argument will also be present.hiddens (
Any
) – Passed in if :paramref:`~pytorch_lightning.core.module.LightningModule.truncated_bptt_steps` > 0.
- Returns
Any of.
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
None
- Training will skip to the next batch. This is only for automatic optimization.This is not supported for multi-GPU, TPU, IPU, or DeepSpeed.
In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example:
def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss
If you define multiple optimizers, this step will be called with an additional
optimizer_idx
parameter.# Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: # do training_step with encoder ... if optimizer_idx == 1: # do training_step with decoder ...
If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.
# Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hidden states from the previous truncated backprop step out, hiddens = self.lstm(data, hiddens) loss = ... return {"loss": loss, "hiddens": hiddens}
Note
The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.
Note
When
accumulate_grad_batches
> 1, the loss returned here will be automatically normalized byaccumulate_grad_batches
internally.
- validation_epoch_end(output)[source]¶
Called at the end of the validation epoch with the outputs of all validation steps.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
outputs – List of outputs you defined in
validation_step()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.- Returns
None
Note
If you didn’t define a
validation_step()
, this won’t be called.Examples
With a single dataloader:
def validation_epoch_end(self, val_step_outputs): for out in val_step_outputs: ...
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader.
def validation_epoch_end(self, outputs): for dataloader_output_result in outputs: dataloader_outs = dataloader_output_result.dataloader_i_outputs self.log("final_metric", final_value)
- validation_step(batch, batch_idx)[source]¶
Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
batch – The output of your
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple val dataloaders used)
- Returns
Any object or value
None
- Validation will skip to the next batch
# pseudocode of order val_outs = [] for val_batch in val_data: out = validation_step(val_batch) if defined("validation_step_end"): out = validation_step_end(out) val_outs.append(out) val_outs = validation_epoch_end(val_outs)
# if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc})
If you pass in multiple val dataloaders,
validation_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
- class reglm.regression.MultiTaskEnformerModel(model1, model2, model3=None, mean=False, specificity=None)[source]¶
Bases:
torch.nn.modules.module.Module
Combine multiple single-task enformer models into a single object.
- forward(x)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
reglm.utils module¶
- reglm.utils.get_label_tokens(values, percentiles)[source]¶
Return labels for sequences given cutoff percentiles
- reglm.utils.get_percentiles(values, n_bins=None, qlist=None)[source]¶
Return list of tokens for sequences by binning their associated values
- reglm.utils.matrix_to_scores(matrix, seqs)[source]¶
Convert a tensor of shape N x seq_len 4 to a 2-D array of shape N, seq_len containing scores for the actual bases in each sequence
- Parameters
matrix (torch.Tensor) – An tensor of shape N x seq_len x 4
seqs (list) – List of DNA sequences of length N
- Returns
- array of shape N x seq_len, which will contain
the values in matrix that correspond to the real bases in seqs.
- Return type
scores (np.array)
- reglm.utils.scores_to_matrix(scores, seqs)[source]¶
Convert per-base scores to a N x seq_len x 4 numpy array
- Parameters
scores (torch.Tensor) – tensor of shape N x seq_len
seqs (list) – List of DNA sequences of length N
- Returns
- An array of shape N x seq_len x 4, in
which the entries corresponding to each base in seqs will be filled with the values in scores, and other entries will be 0.
- Return type
matrix (np.array)
- reglm.utils.seqs_to_idxs(seqs)[source]¶
Convert DNA sequences to indices
- Parameters
seqs (list) – List of sequences to convert into indices
- Returns
np.array of shape (len(seqs), seq_len) containing the sequences as indices
- reglm.utils.tokenize(df, cols, names, n_bins=None, qlist=None, percentiles=None)[source]¶
Create labels for sequences by dividing them into bins
- Parameters
df (pd.DataFrame) – Dataframe containing label values
cols (list) – Names of columns to tokenize
names (list) – Names to use for the returned tokens
n_bins (int) – Number of equal bins into which to split values
qlist (list) – Quantiles to split values into
percentiles (dict) – Dictionary containing columns from cols as keys, and lists of percentile values.
- Returns
Original dataframe with additional columns containing tokenized labels
- Return type
df (pd.DataFrame)