
PAVA Risk Estimates
getPAVAest.RdDetermines isotonic regression estimates via pava, given a vector of binary outcomes, and a vector of scores.
Arguments
- outcome
- Vector of binary outcome for each observation. 
- score
- Numeric vector of continuous predicted risk score. 
- weights
- Vector of numerics to specify PAVA observation weighting. 
- ties
- String to specify how ties should be handled for PAVA. 
- low_events
- Numeric, specifying number of events in the lowest bin. 
- low_nonevents
- Numeric, specifying number of nonevents in the lowest bin. 
- high_events
- Numeric, specifying number of events in the highest bin. 
- high_nonevents
- Numeric, specifying number of nonevents in the highest bin. 
- hilo_obs
- Numeric, specifying number of observations in the highest and lowest bins. 
Examples
# Read in example data
auroc <- read.csv(system.file("extdata", "sample.csv", package = "stats4phc"))
rscore <- auroc$predicted
truth <- as.numeric(auroc$actual)
tail(getPAVAest(outcome = truth, score = rscore), 10)
#>         score percentile outcome   estimate
#> 324 0.3472267 0.81081081       0 0.41818182
#> 325 0.2940563 0.63063063       0 0.32203390
#> 326 0.2956584 0.63963964       0 0.32203390
#> 327 0.3173334 0.70870871       0 0.38095238
#> 328 0.1957009 0.21621622       0 0.08602151
#> 329 0.2909602 0.61561562       0 0.32203390
#> 330 0.1466197 0.03603604       0 0.08602151
#> 331 0.2335213 0.40240240       0 0.09803922
#> 332 0.1310011 0.01201201       0 0.08602151
#> 333 0.3696760 0.85885886       0 0.41818182