
Constrained GAM (cgam) Risk Estimates
getCGAMest.RdFits a Constrained Generalized Additive Model to estimate risk, given a vector of binary outcomes and a vector of scores.
Usage
getCGAMest(
  outcome,
  score,
  numknots = 0,
  smoother = "s.incr",
  logscores = FALSE,
  fitonPerc = TRUE
)Arguments
- outcome
- Vector of binary outcome for each observation. 
- score
- Numeric vector of continuous predicted risk score. 
- numknots
- Numeric to specify the number of knots. Passed to the - smootherfunction. Defaults to 3.
- smoother
- Character string to specify the smoother (from cgam package). Defaults to "s.incr". 
- logscores
- Logical; if - TRUE, fit gam on log scores. Defaults to- FALSE.
- fitonPerc
- Logical; if - TRUE, fit gam on risk percentiles. Defaults to- TRUE.
Examples
# Read in example data
auroc <- read.csv(system.file("extdata", "sample.csv", package = "stats4phc"))
rscore <- auroc$predicted
truth <- as.numeric(auroc$actual)
tail(getCGAMest(outcome = truth, score = rscore), 10)
#>         score percentile outcome   estimate
#> 324 0.3472267 0.81081081       0 0.40075444
#> 325 0.2940563 0.63063063       0 0.35099559
#> 326 0.2956584 0.63963964       0 0.35801069
#> 327 0.3173334 0.70870871       0 0.39452407
#> 328 0.1957009 0.21621622       0 0.08465909
#> 329 0.2909602 0.61561562       0 0.33884696
#> 330 0.1466197 0.03603604       0 0.08465909
#> 331 0.2335213 0.40240240       0 0.18912208
#> 332 0.1310011 0.01201201       0 0.08465909
#> 333 0.3696760 0.85885886       0 0.40075444