![](../logo.png)
Format the covariate effect simulation results for printing
print_coveff.Rd
Format the covariate effect simulation results for printing
Arguments
- coveffsim
an object of class
coveffsim
- n_sigfig
Number of significant figures to form value_label of continuous variables. See
gt::vec_fmt_number()
for details.- use_seps
Whether to use separators for thousands in printing numbers. See
gt::vec_fmt_number()
for details.- drop_trailing_dec_mark
Whether to drop the trailing decimal mark (".") in value_label of continuous variables. See
gt::vec_fmt_number()
for details.
Value
A data frame with the formatted covariate effect simulation results with the following columns:
var_label
: the label of the covariatevalue_label
: the label of the covariate valuevalue_annot
: the annotation of the covariate valueOdds ratio
: the odds ratio of the covariate effect95% CI
: the 95% credible interval of the covariate effect
Details
Note that n_sigfig
, use_seps
, and drop_trailing_dec_mark
are only
applied to the odds ratio and 95% CI columns; value_label column was
already generated in an earlier step in build_spec_coveff()
or
sim_coveff()
.
Examples
data(d_sim_binom_cov_hgly2)
ermod_bin <- dev_ermod_bin(
data = d_sim_binom_cov_hgly2,
var_resp = "AEFLAG",
var_exposure = "AUCss_1000",
var_cov = "BHBA1C_5",
)
print_coveff(sim_coveff(ermod_bin))
#> # A tibble: 6 × 5
#> var_label value_label value_annot `Odds ratio` `95% CI`
#> <chr> <chr> <chr> <chr> <chr>
#> 1 AUCss_1000 0.868 5th 0.548 "[0.452, 0.652]"
#> 2 AUCss_1000 2.21 median 1 " "
#> 3 AUCss_1000 5.30 95th 3.98 "[2.67, 6.18]"
#> 4 BHBA1C_5 5.75 5th 0.276 "[0.200, 0.372]"
#> 5 BHBA1C_5 7.97 median 1 " "
#> 6 BHBA1C_5 10.4 95th 4.20 "[3.02, 6.00]"