
Format the covariate effect simulation results for printing
print_coveff.RdFormat the covariate effect simulation results for printing
Arguments
- coveffsim
an object of class
coveffsim- n_sigfig
Number of significant figures to form value_label of continuous variables. See
gt::vec_fmt_number()for details.- use_seps
Whether to use separators for thousands in printing numbers. See
gt::vec_fmt_number()for details.- drop_trailing_dec_mark
Whether to drop the trailing decimal mark (".") in value_label of continuous variables. See
gt::vec_fmt_number()for details.
Value
A data frame with the formatted covariate effect simulation results with the following columns:
var_label: the label of the covariatevalue_label: the label of the covariate valuevalue_annot: the annotation of the covariate valueOdds ratioorResponse difference: the odds ratio (for binary models) or response difference (for linear models) of the covariate effect95% CI: the 95% credible interval of the covariate effect
Details
Note that n_sigfig, use_seps, and drop_trailing_dec_mark are only
applied to the response difference/odds ratio and 95% CI columns; value_label column was
already generated in an earlier step in build_spec_coveff() or
sim_coveff().
Examples
# \donttest{
data(d_sim_binom_cov_hgly2)
ermod_bin <- dev_ermod_bin(
data = d_sim_binom_cov_hgly2,
var_resp = "AEFLAG",
var_exposure = "AUCss_1000",
var_cov = "BHBA1C_5",
)
print_coveff(sim_coveff(ermod_bin))
#> # A tibble: 6 × 5
#> var_label value_label value_annot `Odds ratio` `95% CI`
#> <chr> <chr> <chr> <chr> <chr>
#> 1 AUCss_1000 0.868 5th 0.548 "[0.460, 0.646]"
#> 2 AUCss_1000 2.21 median 1 " "
#> 3 AUCss_1000 5.30 95th 3.98 "[2.73, 5.95]"
#> 4 BHBA1C_5 5.75 5th 0.276 "[0.202, 0.372]"
#> 5 BHBA1C_5 7.97 median 1 " "
#> 6 BHBA1C_5 10.4 95th 4.20 "[3.01, 5.93]"
# Linear regression model example
data(d_sim_lin)
ermod_lin <- dev_ermod_lin(
data = d_sim_lin,
var_resp = "response",
var_exposure = "AUCss",
var_cov = c("SEX", "BAGE"),
)
print_coveff(sim_coveff(ermod_lin))
#> # A tibble: 8 × 5
#> var_label value_label value_annot `Response difference` `95% CI`
#> <chr> <chr> <chr> <chr> <chr>
#> 1 AUCss 5.00 5th −20.4 "[−23.0, −17.8]"
#> 2 AUCss 50.0 median 0 " "
#> 3 AUCss 95.0 95th 20.4 "[17.8, 23.0]"
#> 4 SEX F 1st freq 0 " "
#> 5 SEX M 2nd freq −4.14 "[−7.54, −0.692]"
#> 6 BAGE 33.5 5th −8.50 "[−11.3, −5.56]"
#> 7 BAGE 50.4 median 0 " "
#> 8 BAGE 67.0 95th 8.34 "[5.46, 11.1]"
# }