
Simulate Longitudinal Data from a Claret-Bruno Model
SimLongitudinalClaretBruno-class.RdSimulate Longitudinal Data from a Claret-Bruno Model
Usage
SimLongitudinalClaretBruno(
times = c(-100, -50, 0, 50, 100, 150, 250, 350, 450, 550)/365,
sigma = 0.01,
mu_b = log(60),
mu_g = log(c(0.9, 1.1)),
mu_c = log(c(0.25, 0.35)),
mu_p = log(c(1.5, 2)),
omega_b = 0.2,
omega_g = 0.2,
omega_c = 0.2,
omega_p = 0.2,
link_dsld = 0,
link_ttg = 0,
link_identity = 0,
link_growth = 0
)Arguments
- times
(
numeric)
the times to generate observations at.- sigma
(
number)
the variance of the longitudinal values.- mu_b
(
numeric)
the mean population baseline sld value.- mu_g
(
numeric)
the mean population growth rate.- mu_c
(
numeric)
the mean population resistance rate.- mu_p
(
numeric)
the mean population growth inhibition.- omega_b
(
number)
the population standard deviation for the baseline sld value.- omega_g
(
number)
the population standard deviation for the growth rate.- omega_c
(
number)
the population standard deviation for the resistance rate.- omega_p
(
number)
the population standard deviation for the growth inhibition.- link_dsld
(
number)
the link coefficient for the derivative contribution.- link_ttg
(
number)
the link coefficient for the time-to-growth contribution.- link_identity
(
number)
the link coefficient for the SLD Identity contribution.- link_growth
(
number)
the link coefficient for the growth parameter contribution.
Slots
sigma(
numeric)
See arguments.mu_b(
numeric)
See arguments.mu_g(
numeric)
See arguments.mu_c(
numeric)
See arguments.mu_p(
numeric)
See arguments.omega_b(
numeric)
See arguments.omega_g(
numeric)
See arguments.omega_c(
numeric)
See arguments.omega_p(
numeric)
See arguments.link_dsld(
numeric)
See arguments.link_ttg(
numeric)
See arguments.link_identity(
numeric)
See arguments.link_growth(
numeric)
See arguments.
See also
Other SimLongitudinal:
SimLongitudinal-class,
SimLongitudinalGSF-class,
SimLongitudinalRandomSlope-class,
SimLongitudinalSteinFojo-class