Input generated data for a simulation study
sim_data_list.Rd
A function for defining generated data for use as part of a simulation study.
Arguments
- data_list
list of lists of matrices. The lists at the highest level differ in that the parameters used to generate the data. The matrices at lowest level are different iterations of the same data generation parameters. See
details
.- guide
data.frame.
guide
contains information on the parameters that differ at the highest level ofdata_list
. Seedetails.
- effect
character. The column in
guide
that corresponds to the true treatment effect estimate (hazard ratio or odds ratio).- drift
character. The column in
guide
that corresponds to the true drift effect estimate (hazard ratio or odds ratio). A drift >1 means the external arm experiences greater effects.- index
character. The column in
guide
that corresponds to the index column.
Details
In this function, you are providing generated data for analysis in a
simulation study in psborrow2
. Note that this function does not
do any data generation on your behalf; it assumes that you have generated
the data already. For a full working example, refer to the relevant vignette:
vignette('simulation_study', package = 'psborrow2')
.
More information on the inputs is provided below.
Matrix requirements in data_list
Each matrix embedded in data_list
must have:
a flag for whether the patient is an external control
a flag for whether the patient is in the experimental treatment arm
outcome information (time and censorship for survival, flag for outcome in binary endpoints)
Optionally, the matrices may also contain covariates. See examples
.
See also
Other simulation classes:
sim_borrowing_list()
,
sim_covariate_list()
,
sim_outcome_list()
,
sim_treatment_list()
Examples
base_mat <- matrix(
c(
rep(0, 200), rep(0, 200), rep(1, 200),
rep(1, 200), rep(0, 200), rep(0, 200),
rep(0, 600)
),
ncol = 3,
dimnames = list(NULL, c("ext", "trt", "driftOR"))
)
add_binary_endpoint <- function(odds_ratio,
base_matrix = base_mat) {
linear_predictor <- base_matrix[, "trt"] * log(odds_ratio)
prob <- 1 / (1 + exp(-linear_predictor))
bin_endpoint <- rbinom(
NROW(base_matrix),
1,
prob
)
cbind(base_matrix, matrix(bin_endpoint, ncol = 1, dimnames = list(NULL, "ep")))
}
data_list <- list(
list(add_binary_endpoint(1.5), add_binary_endpoint(1.5)),
list(add_binary_endpoint(2.5), add_binary_endpoint(2.5))
)
guide <- data.frame(
trueOR = c(1.5, 2.5),
driftOR = c(1.0, 1.0),
ind = c(1, 2)
)
sdl <- sim_data_list(
data_list = data_list,
guide = guide,
effect = "trueOR",
drift = "driftOR",
index = "ind"
)