What is the bias for a given model
sim_estimate_bias.Rd
What is the bias for a given model
Arguments
- draws
draws_array Object of class
draws
fromCmdStanMCMC$draws()
.- true_effect
numeric. The true treatment effect.
Examples
base_mat <- matrix(
c(
rep(0, 200), rep(0, 200), rep(1, 200),
rep(1, 200), rep(0, 200), rep(0, 200),
rep(0, 600)
),
ncol = 3,
dimnames = list(NULL, c("ext", "trt", "driftOR"))
)
add_binary_endpoint <- function(odds_ratio,
base_matrix = base_mat) {
linear_predictor <- base_matrix[, "trt"] * log(odds_ratio)
prob <- 1 / (1 + exp(-linear_predictor))
bin_endpoint <- rbinom(
NROW(base_matrix),
1,
prob
)
cbind(base_matrix, matrix(bin_endpoint, ncol = 1, dimnames = list(NULL, "ep")))
}
data_list <- list(
list(add_binary_endpoint(1.5), add_binary_endpoint(1.5)),
list(add_binary_endpoint(2.5), add_binary_endpoint(2.5))
)
guide <- data.frame(
trueOR = c(1.5, 2.5),
driftOR = c(1.0, 1.0),
index = 1:2
)
sdl <- sim_data_list(
data_list = data_list,
guide = guide,
effect = "trueOR",
drift = "driftOR",
index = "index"
)
x <- create_simulation_obj(
data_matrix_list = sdl,
outcome = logistic_bin_outcome("ep", normal_prior(0, 1000)),
borrowing = sim_borrowing_list(list(
full_borrowing = borrowing_details("Full borrowing", "ext"),
bdb = borrowing_details("BDB", "ext", exponential_prior(0.0001))
)),
treatment = treatment_details("trt", normal_prior(0, 1000))
)
i <- 1
j <- 1
true_effect <- x@guide[i, x@data_matrix_list@effect]
anls_obj <- x@analysis_obj_list[[i]][[j]]
res <- mcmc_sample(anls_obj, iter_sampling = 500)
#> Running MCMC with 4 sequential chains...
#>
#> Chain 1 finished in 0.6 seconds.
#> Chain 2 finished in 0.6 seconds.
#> Chain 3 finished in 0.6 seconds.
#> Chain 4 finished in 0.6 seconds.
#>
#> All 4 chains finished successfully.
#> Mean chain execution time: 0.6 seconds.
#> Total execution time: 2.7 seconds.
#>
draws <- res$draws()
psborrow2:::sim_estimate_bias(
draws,
true_effect
)
#> [1] 0.1086686