Do the posterior quantiles contain a value of 1.0?
sim_is_null_effect_covered.RdDo the posterior quantiles contain a value of 1.0?
Arguments
- draws
 draws_array Object of class
drawsfromCmdStanMCMC$draws().- posterior_quantiles
 numeric. Vector of length two specifying quantiles of the posterior treatment effect distribution in which to search for the null effect.
Examples
base_mat <- matrix(
  c(
    rep(0, 200), rep(0, 200), rep(1, 200),
    rep(1, 200), rep(0, 200), rep(0, 200),
    rep(0, 600)
  ),
  ncol = 3,
  dimnames = list(NULL, c("ext", "trt", "driftOR"))
)
add_binary_endpoint <- function(odds_ratio,
                                base_matrix = base_mat) {
  linear_predictor <- base_matrix[, "trt"] * log(odds_ratio)
  prob <- 1 / (1 + exp(-linear_predictor))
  bin_endpoint <- rbinom(
    NROW(base_matrix),
    1,
    prob
  )
  cbind(base_matrix, matrix(bin_endpoint, ncol = 1, dimnames = list(NULL, "ep")))
}
data_list <- list(
  list(add_binary_endpoint(1.5), add_binary_endpoint(1.5)),
  list(add_binary_endpoint(2.5), add_binary_endpoint(2.5))
)
guide <- data.frame(
  trueOR = c(1.5, 2.5),
  driftOR = c(1.0, 1.0),
  index = 1:2
)
sdl <- sim_data_list(
  data_list = data_list,
  guide = guide,
  effect = "trueOR",
  drift = "driftOR",
  index = "index"
)
x <- create_simulation_obj(
  data_matrix_list = sdl,
  outcome = logistic_bin_outcome("ep", normal_prior(0, 1000)),
  borrowing = sim_borrowing_list(list(
    full_borrowing = borrowing_details("Full borrowing", "ext"),
    bdb = borrowing_details("BDB", "ext", exponential_prior(0.0001))
  )),
  treatment = treatment_details("trt", normal_prior(0, 1000))
)
if (FALSE) {
i <- 1
j <- 1
anls_obj <- x@analysis_obj_list[[i]][[j]]
res <- mcmc_sample(anls_obj, iter_sampling = 500)
draws <- res$draws()
psborrow2:::sim_is_null_effect_covered(
  draws,
  c(0.025, 0.975)
)
}