Do the posterior quantiles contain a value of 1.0?
sim_is_null_effect_covered.Rd
Do the posterior quantiles contain a value of 1.0?
Arguments
- draws
draws_array Object of class
draws
fromCmdStanMCMC$draws()
.- posterior_quantiles
numeric. Vector of length two specifying quantiles of the posterior treatment effect distribution in which to search for the null effect.
Examples
base_mat <- matrix(
c(
rep(0, 200), rep(0, 200), rep(1, 200),
rep(1, 200), rep(0, 200), rep(0, 200),
rep(0, 600)
),
ncol = 3,
dimnames = list(NULL, c("ext", "trt", "driftOR"))
)
add_binary_endpoint <- function(odds_ratio,
base_matrix = base_mat) {
linear_predictor <- base_matrix[, "trt"] * log(odds_ratio)
prob <- 1 / (1 + exp(-linear_predictor))
bin_endpoint <- rbinom(
NROW(base_matrix),
1,
prob
)
cbind(base_matrix, matrix(bin_endpoint, ncol = 1, dimnames = list(NULL, "ep")))
}
data_list <- list(
list(add_binary_endpoint(1.5), add_binary_endpoint(1.5)),
list(add_binary_endpoint(2.5), add_binary_endpoint(2.5))
)
guide <- data.frame(
trueOR = c(1.5, 2.5),
driftOR = c(1.0, 1.0),
index = 1:2
)
sdl <- sim_data_list(
data_list = data_list,
guide = guide,
effect = "trueOR",
drift = "driftOR",
index = "index"
)
x <- create_simulation_obj(
data_matrix_list = sdl,
outcome = logistic_bin_outcome("ep", normal_prior(0, 1000)),
borrowing = sim_borrowing_list(list(
full_borrowing = borrowing_details("Full borrowing", "ext"),
bdb = borrowing_details("BDB", "ext", exponential_prior(0.0001))
)),
treatment = treatment_details("trt", normal_prior(0, 1000))
)
if (FALSE) {
i <- 1
j <- 1
anls_obj <- x@analysis_obj_list[[i]][[j]]
res <- mcmc_sample(anls_obj, iter_sampling = 500)
draws <- res$draws()
psborrow2:::sim_is_null_effect_covered(
draws,
c(0.025, 0.975)
)
}