scimilarity.interpreter#
- class scimilarity.interpreter.Interpreter(encoder, gene_order)[source]#
Bases:
object
A class that interprets significant genes.
- Parameters:
encoder (torch.nn.Module) –
gene_order (list) –
- get_attributions(anchors, negatives)[source]#
Returns attributions, which can later be aggregated. High attributions for genes that are expressed more highly in the anchor and that affect the distance between anchors and negatives strongly.
- Parameters:
anchors (numpy.ndarray, scipy.sparse.csr_matrix, torch.Tensor) – Tensor for anchor or positive cells.
negatives (numpy.ndarray, scipy.sparse.csr_matrix, torch.Tensor) – Tensor for negative cells.
- Returns:
A 2D numpy array of attributions [num_cells x num_genes].
- Return type:
numpy.ndarray
Examples
>>> attr = interpreter.get_attributions(anchors, negatives)
- get_ranked_genes(attrs)[source]#
Get the ranked gene list based on highest attributions.
- Parameters:
attr (numpy.ndarray) – Attributions matrix.
attrs (numpy.ndarray) –
- Returns:
A pandas dataframe containing the ranked attributions for each gene
- Return type:
pandas.DataFrame
Examples
>>> attrs_df = interpreter.get_ranked_genes(attrs)
- plot_ranked_genes(attrs_df, n_plot=15, filename=None)[source]#
Plot the ranked gene attributions.
- Parameters:
attrs_df (pandas.DataFrame) – Dataframe of ranked attributions.
n_plot (int) – The number of top genes to plot.
filename (str, optional) – The filename to save to plot as.
Examples
>>> interpreter.plot_ranked_genes(attrs_df)