decima.hub package¶
Submodules¶
decima.hub.download module¶
- decima.hub.download.cache_decima_metadata()[source]¶
Download pre-trained Decima model data from wandb.
- decima.hub.download.cache_decima_weights()[source]¶
Download pre-trained Decima model weights from wandb.
- decima.hub.download.download_decima(model='ensemble', download_dir='.')[source]¶
Download all required data for Decima.
- Parameters:
download_dir (
str) – Directory to download the model weights and metadata.- Returns:
Path to the downloaded directory containing the model weights and metadata.
- decima.hub.download.download_decima_metadata(metadata='ensemble', download_dir='.')[source]¶
Download pre-trained Decima model data from wandb.
- decima.hub.download.download_decima_weights(model='ensemble', download_dir='.')[source]¶
Download pre-trained Decima model weights from wandb.
- Parameters:
model_name – Model name or replicate number.
download_dir (
str) – Directory to download the model weights.
- Returns:
Path to the downloaded model weights.
Module contents¶
- decima.hub.load_decima_model(model='ensemble', device=None)[source]¶
Load a pre-trained Decima model from wandb or local path.
- Parameters:
model (
Union[str,int,List[str]]) – Model identifier or path. Can be: - int: Replicate number (0-3) - str: Model name on wandb - str: Path to local model checkpoint - List: list of local model checkpointsdevice (
Optional[str]) – Device to load the model on. If None, automatically selects the best available device.
- Returns:
A pre-trained Decima model instance loaded on the specified device.
- Return type:
- Raises:
ValueError – If model identifier is invalid or not found.