Skip to contents

This class extends the general LongitudinalModel class for using the Claret-Bruno model for the longitudinal outcome.

Usage

LongitudinalClaretBruno(
  mu_b = prior_normal(log(60), 0.5),
  mu_g = prior_normal(log(1), 0.5),
  mu_c = prior_normal(log(0.4), 0.5),
  mu_p = prior_normal(log(2), 0.5),
  omega_b = prior_lognormal(log(0.2), 0.5),
  omega_g = prior_lognormal(log(0.2), 0.5),
  omega_c = prior_lognormal(log(0.2), 0.5),
  omega_p = prior_lognormal(log(0.2), 0.5),
  sigma = prior_lognormal(log(0.1), 0.5),
  scaled_variance = TRUE,
  centred = FALSE
)

Arguments

mu_b

(Prior)
for the mean population baseline sld value.

mu_g

(Prior)
for the mean population growth rate.

mu_c

(Prior)
for the mean population resistance rate.

mu_p

(Prior)
for the mean population growth inhibition

omega_b

(Prior)
for the population standard deviation for the baseline sld value.

omega_g

(Prior)
for the population standard deviation for the growth rate.

omega_c

(Prior)
for the population standard deviation for the resistance rate.

omega_p

(Prior)
for the population standard deviation for the growth inhibition.

sigma

(Prior)
for the variance of the longitudinal values.

scaled_variance

(logical)
whether the variance should be scaled by the expected value (see the "Statistical Specifications" vignette for more details)

centred

(logical)
whether to use the centred parameterization.