This class extends the general LongitudinalModel
class for using the
Claret-Bruno model for the longitudinal outcome.
Usage
LongitudinalClaretBruno(
mu_b = prior_normal(log(60), 0.5),
mu_g = prior_normal(log(1), 0.5),
mu_c = prior_normal(log(0.4), 0.5),
mu_p = prior_normal(log(2), 0.5),
omega_b = prior_lognormal(log(0.2), 0.5),
omega_g = prior_lognormal(log(0.2), 0.5),
omega_c = prior_lognormal(log(0.2), 0.5),
omega_p = prior_lognormal(log(0.2), 0.5),
sigma = prior_lognormal(log(0.1), 0.5),
scaled_variance = TRUE,
centred = FALSE
)
Arguments
- mu_b
(
Prior
)
for the mean population baseline sld value.- mu_g
(
Prior
)
for the mean population growth rate.- mu_c
(
Prior
)
for the mean population resistance rate.- mu_p
(
Prior
)
for the mean population growth inhibition- omega_b
(
Prior
)
for the population standard deviation for the baseline sld value.- omega_g
(
Prior
)
for the population standard deviation for the growth rate.- omega_c
(
Prior
)
for the population standard deviation for the resistance rate.- omega_p
(
Prior
)
for the population standard deviation for the growth inhibition.- sigma
(
Prior
)
for the variance of the longitudinal values.- scaled_variance
(
logical
)
whether the variance should be scaled by the expected value (see the "Statistical Specifications" vignette for more details)- centred
(
logical
)
whether to use the centred parameterization.