Simulate Longitudinal Data from a GSF Model
SimLongitudinalGSF-class.Rd
Simulate Longitudinal Data from a GSF Model
Usage
SimLongitudinalGSF(
times = c(-100, -50, 0, 50, 100, 150, 250, 350, 450, 550)/365,
sigma = 0.01,
mu_s = log(c(0.6, 0.4)),
mu_g = log(c(0.25, 0.35)),
mu_b = log(60),
mu_phi = qlogis(c(0.4, 0.6)),
omega_b = 0.2,
omega_s = 0.2,
omega_g = 0.2,
omega_phi = 0.2,
link_dsld = 0,
link_ttg = 0,
link_identity = 0,
link_growth = 0
)
Arguments
- times
(
numeric
)
the times to generate observations at.- sigma
(
number
)
the variance of the longitudinal values.- mu_s
(
numeric
)
the mean shrinkage rates.- mu_g
(
numeric
)
the mean growth rates.- mu_b
(
numeric
)
the mean baseline values.- mu_phi
(
numeric
)
the mean proportion of cells affected by the treatment- omega_b
(
number
)
the baseline value standard deviation.- omega_s
(
number
)
the shrinkage rate standard deviation.- omega_g
(
number
)
the growth rate standard deviation.- omega_phi
(
number
)
for the standard deviation of the proportion of cells affected by the treatmentomega_phi
.- link_dsld
(
number
)
the link coefficient for the derivative contribution.- link_ttg
(
number
)
the link coefficient for the time-to-growth contribution.- link_identity
(
number
)
the link coefficient for the SLD Identity contribution.- link_growth
(
number
)
the link coefficient for the growth parameter contribution.
Slots
sigma
(
numeric
)
See arguments.mu_s
(
numeric
)
See arguments.mu_g
(
numeric
)
See arguments.mu_b
(
numeric
)
See arguments.mu_phi
(
numeric
)
See arguments.omega_b
(
numeric
)
See arguments.omega_s
(
numeric
)
See arguments.omega_g
(
numeric
)
See arguments.omega_phi
(
numeric
)
See arguments.link_dsld
(
numeric
)
See arguments.link_ttg
(
numeric
)
See arguments.link_identity
(
numeric
)
See arguments.link_growth
(
numeric
)
See arguments.
See also
Other SimLongitudinal:
SimLongitudinal-class
,
SimLongitudinalClaretBruno-class
,
SimLongitudinalRandomSlope-class
,
SimLongitudinalSteinFojo-class