Skip to contents

This function does no estimation, but uses the score as it is (it works like an identity function).

Usage

getASISest(outcome, score)

Arguments

outcome

Vector of binary outcome for each observation.

score

Numeric vector of continuous predicted risk score.

Value

A data frame with 4 columns (score, score percentile, outcome, estimate).

Examples

# Read in example data
auroc <- read.csv(system.file("extdata", "sample.csv", package = "stats4phc"))
rscore <- auroc$predicted
truth <- as.numeric(auroc$actual)

tail(getASISest(outcome = truth, score = rscore), 10)
#>         score percentile outcome  estimate
#> 324 0.3472267 0.81081081       0 0.3472267
#> 325 0.2940563 0.63063063       0 0.2940563
#> 326 0.2956584 0.63963964       0 0.2956584
#> 327 0.3173334 0.70870871       0 0.3173334
#> 328 0.1957009 0.21621622       0 0.1957009
#> 329 0.2909602 0.61561562       0 0.2909602
#> 330 0.1466197 0.03603604       0 0.1466197
#> 331 0.2335213 0.40240240       0 0.2335213
#> 332 0.1310011 0.01201201       0 0.1310011
#> 333 0.3696760 0.85885886       0 0.3696760