
Binned Risk Estimates
getBINNEDest.RdCalculates bins based on number of evenly spaced bins or n-tiles. Determines average risk within bins, used for risk estimates.
Usage
getBINNEDest(
  outcome,
  score,
  quantiles = NULL,
  bins = NULL,
  right = TRUE,
  errorbar.sem = NULL
)Arguments
- outcome
- Vector of binary outcome for each observation. 
- score
- Numeric vector of continuous predicted risk score. 
- quantiles
- Numeric; quantiles to split bins. 
- bins
- Numeric; number of evenly spaced bins or bin locations. 
- right
- Logical indicating right closed interval. Defaults to - TRUE.
- errorbar.sem
- Scalar numeric representing the number of standard error from the means (SEM) used to calculate risk error bar. 
Value
A data frame with 4 columns
(score, score percentile, outcome, estimate).
Additionally, there is an attribute "errorbar" holding the error-bar data if
errorbar.sem was specified.
Examples
# Read in example data
auroc <- read.csv(system.file("extdata", "sample.csv", package = "stats4phc"))
rscore <- auroc$predicted
truth <- as.numeric(auroc$actual)
getBINNEDest(outcome = truth, score = rscore)
#>        score percentile outcome   estimate
#> 1  0.1500925  0.1021021      NA 0.11764706
#> 2  0.1833072  0.2012012      NA 0.09090909
#> 3  0.2034668  0.3003003      NA 0.09090909
#> 4  0.2232864  0.4024024      NA 0.08823529
#> 5  0.2529264  0.5015015      NA 0.24242424
#> 6  0.2759024  0.6006006      NA 0.30303030
#> 7  0.3000654  0.7027027      NA 0.35294118
#> 8  0.3329956  0.8018018      NA 0.54545455
#> 9  0.3679189  0.9009009      NA 0.27272727
#> 10 0.4471575  1.0000000      NA 0.63636364