Constrained GAM (cgam) Risk Estimates
getCGAMest.Rd
Fits a Constrained Generalized Additive Model to estimate risk, given a vector of binary outcomes and a vector of scores.
Usage
getCGAMest(
outcome,
score,
numknots = 0,
smoother = "s.incr",
logscores = FALSE,
fitonPerc = TRUE
)
Arguments
- outcome
Vector of binary outcome for each observation.
- score
Numeric vector of continuous predicted risk score.
- numknots
Numeric to specify the number of knots. Passed to the
smoother
function. Defaults to 3.- smoother
Character string to specify the smoother (from cgam package). Defaults to "s.incr".
- logscores
Logical; if
TRUE
, fit gam on log scores. Defaults toFALSE
.- fitonPerc
Logical; if
TRUE
, fit gam on risk percentiles. Defaults toTRUE
.
Examples
# Read in example data
auroc <- read.csv(system.file("extdata", "sample.csv", package = "stats4phc"))
rscore <- auroc$predicted
truth <- as.numeric(auroc$actual)
tail(getCGAMest(outcome = truth, score = rscore), 10)
#> score percentile outcome estimate
#> 324 0.3472267 0.81081081 0 0.40075444
#> 325 0.2940563 0.63063063 0 0.35099559
#> 326 0.2956584 0.63963964 0 0.35801069
#> 327 0.3173334 0.70870871 0 0.39452407
#> 328 0.1957009 0.21621622 0 0.08465909
#> 329 0.2909602 0.61561562 0 0.33884696
#> 330 0.1466197 0.03603604 0 0.08465909
#> 331 0.2335213 0.40240240 0 0.18912208
#> 332 0.1310011 0.01201201 0 0.08465909
#> 333 0.3696760 0.85885886 0 0.40075444