Skip to contents

Various metrics related to model sculpting

Usage

calc_dir_var_imp(object, newdata = NULL)

calc_cumul_R2(object, newdata = NULL)

Arguments

object

sculpture

newdata

(Optional) Data to calculate the importance from. If omitted, the data that were provided to build the sculpture are used.

Value

data.table with direct requested metrics.

Functions

  • calc_dir_var_imp(): Direct variable importance

  • calc_cumul_R2(): Calculate cumulative approximation of R^2

Examples

df <- mtcars
df$vs <- as.factor(df$vs)
model <- rpart::rpart(
  hp ~ mpg + carb + vs,
  data = df,
  control = rpart::rpart.control(minsplit = 10)
)
model_predict <- function(x) predict(model, newdata = x)
covariates <- c("mpg", "carb", "vs")
pm <- sample_marginals(df[covariates], n = 50, seed = 5)

rs <- sculpt_rough(
  dat = pm,
  model_predict_fun = model_predict,
  n_ice = 10,
  seed = 1,
  verbose = 0
)

# show direct variable importance
calc_dir_var_imp(rs)
#>    feature  variance variance_total     ratio
#>     <fctr>     <num>          <num>     <num>
#> 1:     mpg 1936.4199       2296.917 0.8430518
#> 2:    carb  346.5405       2296.917 0.1508720
#> 3:      vs    0.0000       2296.917 0.0000000

# show cumulative approximation R^2
calc_cumul_R2(rs)
#>    feature       R2
#>     <fctr>    <num>
#> 1:     mpg 0.849128
#> 2:    carb 1.000000
#> 3:      vs 1.000000