grelu.interpret.modisco#
Functions#
|
Modified from jmschrei/tfmodisco-lite |
|
Run TF-Modisco to get relevant motifs for a set of inputs, and optionally score the |
Module Contents#
- grelu.interpret.modisco._add_tomtom_to_modisco_report(modisco_dir: str, tomtom_results: pandas.DataFrame, meme_file: str, top_n_matches: int) None [source]#
Modified from jmschrei/tfmodisco-lite
- grelu.interpret.modisco.run_modisco(model, seqs: pandas.DataFrame | numpy.array | List[str], genome: str | None = None, prediction_transform: Callable | None = None, window: int = None, meme_file: str = None, out_dir: str = 'outputs', devices: str | int = 'cpu', num_workers: int = 1, batch_size: int = 64, n_shuffles: int = 10, seed=None, method: str = 'deepshap', **kwargs) None [source]#
Run TF-Modisco to get relevant motifs for a set of inputs, and optionally score the motifs against a reference set of motifs using TOMTOM
- Parameters:
model – A trained deep learning model
seqs – Input DNA sequences as genomic intervals, strings, or integer-encoded form.
genome – Name of the genome to use. Only used if genomic intervals are provided.
prediction_transform – A module to transform the model output
window – Sequence length over which to consider attributions
meme_file – Path to a MEME file containing reference motifs for TOMTOM.
out_dir – Output directory
devices – Indices of devices to use for model inference
num_workers – Number of workers to use for model inference
batch_size – Batch size to use for model inference
n_shuffles – Number of times to shuffle the background sequences for deepshap.
seed – Random seed
method – Either “deepshap”, “saliency” or “ism”.
**kwargs – Additional arguments to pass to TF-Modisco.
- Raises:
NotImplementedError – if the method is neither “deepshap” nor “ism”