grelu.model.position#
Functions to generate positional encodings.
Functions#
|
Create a positional embedding based on a central mask. |
|
Create a positional embedding based on exponential decay. |
Module Contents#
- grelu.model.position.get_central_mask(x: torch.Tensor, out_channels: int) torch.Tensor [source]#
Create a positional embedding based on a central mask.
- Parameters:
x – Input tensor of shape (N, L, C)
out_channels – Number of channels in the output
- Returns:
Positional embedding tensor of shape (L, channels)
- grelu.model.position.get_exponential_embedding(x: torch.Tensor, out_channels: int, min_half_life: float = 3.0) torch.Tensor [source]#
Create a positional embedding based on exponential decay.
- Parameters:
x – Input tensor of shape (N, L, C)
out_channels – Number of channels in the output
min_half_life – Minimum half-life for exponential decay
- Returns:
Positional embedding tensor of shape (L, channels)